1,065 research outputs found

    A comparison of dose-response characteristics of four NTCP models using outcomes of radiation-induced optic neuropathy and retinopathy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Biological models are used to relate the outcome of radiation therapy to dose distribution. As use of biological models in treatment planning expands, uncertainties associated with the use of specific models for predicting outcomes should be understood and quantified. In particular, the question to what extent model predictions are data-driven or dependent on the choice of the model has to be explored.</p> <p>Methods</p> <p>Four dose-response models--logistic, log-logistic, Poisson-based and probit--were tested for their ability and consistency in describing dose-response data for radiation-induced optic neuropathy (RION) and retinopathy (RIRP). Dose to the optic nerves was specified as the minimum dose, <it>D<sub>min</sub></it>, received by any segment of the organ to which the damage was diagnosed by ophthalmologic evaluation. For retinopathy, the dose to the retina was specified as the highest isodose covering at least 1/3 of the retinal surface (<it>D<sub>33%</sub></it>) that geometrically covered the observed retinal damage. Data on both complications were modeled separately for patients treated once daily and twice daily. Model parameters <it>D<sub>50 </sub></it>and <it>γ </it>and corresponding confidence intervals were obtained using maximum-likelihood method.</p> <p>Results</p> <p>Model parameters were reasonably consistent for RION data for patients treated once daily, <it>D<sub>50 </sub></it>ranging from 94.2 to 104.7 Gy and <it>γ </it>from 0.88 to 1.41. Similar consistency was seen for RIRP data which span a broad range of complication incidence, with <it>D<sub>50 </sub></it>from 72.2 to 75.0 Gy and <it>γ </it>from 1.51 to 2.16 for patients treated twice daily; 72.2-74.0 Gy and 0.84-1.20 for patients treated once daily. However, large variations were observed for RION in patients treated twice daily, D<sub>50 </sub>from 96.3 to 125.2 Gy and <it>γ </it>from 0.80 to 1.56. Complication incidence in this dataset in any dose group did not exceed 20%.</p> <p>Conclusions</p> <p>For the considered data sets, the log-logistic model tends to lead to larger <it>D<sub>50 </sub></it>and lower <it>γ </it>compared to other models for all datasets. Statements regarding normal tissue radiosensitivity and steepness of dose-response, based on model parameters, should be made with caution as the latter are not only model-dependent but also sensitive to the range of complication incidence exhibited by clinical data.</p

    Deformable registration of X-ray and MRI for post-implant dosimetry in low-dose-rate prostate brachytherapy

    Get PDF
    Purpose Dosimetric assessment following permanent prostate brachytherapy (PPB) commonly involves seed localization using CT and prostate delineation using coregistered MRI. However, pelvic CT leads to additional imaging dose and requires significant resources to acquire and process both CT and MRI. In this study, we propose an automatic postimplant dosimetry approach that retains MRI for soft‐tissue contouring, but eliminates the need for CT and reduces imaging dose while overcoming the inconsistent appearance of seeds on MRI with three projection x rays acquired using a mobile C‐arm. Methods Implanted seeds are reconstructed using x rays by solving a combinatorial optimization problem and deformably registered to MRI. Candidate seeds are located in MR images using local hypointensity identification. X ray‐based seeds are registered to these candidate seeds in three steps: (a) rigid registration using a stochastic evolutionary optimizer, (b) affine registration using an iterative closest point optimizer, and (c) deformable registration using a local feature point search and nonrigid coherent point drift. The algorithm was evaluated using 20 PPB patients with x rays acquired immediately postimplant and T2‐weighted MR images acquired the next day at 1.5 T with mean 0.8 × 0.8 × 3.0 mmurn:x-wiley:00942405:media:mp13667:mp13667-math-0001 voxel dimensions. Target registration error (TRE) was computed based on the distance from algorithm results to manually identified seed locations using coregistered CT acquired the same day as the MRI. Dosimetric accuracy was determined by comparing prostate D90 determined using the algorithm and the ground truth CT‐based seed locations. Results The mean ± standard deviation TREs across 20 patients including 1774 seeds were 2.23 ± 0.52 mm (rigid), 1.99 ± 0.49 mm (rigid + affine), and 1.76 ± 0.43 mm (rigid + affine + deformable). The corresponding mean ± standard deviation D90 errors were 5.8 ± 4.8%, 3.4 ± 3.4%, and 2.3 ± 1.9%, respectively. The mean computation time of the registration algorithm was 6.1 s. Conclusion The registration algorithm accuracy and computation time are sufficient for clinical PPB postimplant dosimetry

    GPU-based Fast Low-dose Cone Beam CT Reconstruction via Total Variation

    Full text link
    Cone-beam CT (CBCT) has been widely used in image guided radiation therapy (IGRT) to acquire updated volumetric anatomical information before treatment fractions for accurate patient alignment purpose. However, the excessive x-ray imaging dose from serial CBCT scans raises a clinical concern in most IGRT procedures. The excessive imaging dose can be effectively reduced by reducing the number of x-ray projections and/or lowering mAs levels in a CBCT scan. The goal of this work is to develop a fast GPU-based algorithm to reconstruct high quality CBCT images from undersampled and noisy projection data so as to lower the imaging dose. The CBCT is reconstructed by minimizing an energy functional consisting of a data fidelity term and a total variation regularization term. We developed a GPU-friendly version of the forward-backward splitting algorithm to solve this model. A multi-grid technique is also employed. We test our CBCT reconstruction algorithm on a digital NCAT phantom and a head-and-neck patient case. The performance under low mAs is also validated using a physical Catphan phantom and a head-and-neck Rando phantom. It is found that 40 x-ray projections are sufficient to reconstruct CBCT images with satisfactory quality for IGRT patient alignment purpose. Phantom experiments indicated that CBCT images can be successfully reconstructed with our algorithm under as low as 0.1 mAs/projection level. Comparing with currently widely used full-fan head-and-neck scanning protocol of about 360 projections with 0.4 mAs/projection, it is estimated that an overall 36 times dose reduction has been achieved with our algorithm. Moreover, the reconstruction time is about 130 sec on an NVIDIA Tesla C1060 GPU card, which is estimated ~100 times faster than similar iterative reconstruction approaches.Comment: 20 pages, 10 figures, Paper was revised and more testing cases were added

    3D tumor localization through real-time volumetric x-ray imaging for lung cancer radiotherapy

    Full text link
    Recently we have developed an algorithm for reconstructing volumetric images and extracting 3D tumor motion information from a single x-ray projection. We have demonstrated its feasibility using a digital respiratory phantom with regular breathing patterns. In this work, we present a detailed description and a comprehensive evaluation of the improved algorithm. The algorithm was improved by incorporating respiratory motion prediction. The accuracy and efficiency were then evaluated on 1) a digital respiratory phantom, 2) a physical respiratory phantom, and 3) five lung cancer patients. These evaluation cases include both regular and irregular breathing patterns that are different from the training dataset. For the digital respiratory phantom with regular and irregular breathing, the average 3D tumor localization error is less than 1 mm. On an NVIDIA Tesla C1060 GPU card, the average computation time for 3D tumor localization from each projection ranges between 0.19 and 0.26 seconds, for both regular and irregular breathing, which is about a 10% improvement over previously reported results. For the physical respiratory phantom, an average tumor localization error below 1 mm was achieved with an average computation time of 0.13 and 0.16 seconds on the same GPU card, for regular and irregular breathing, respectively. For the five lung cancer patients, the average tumor localization error is below 2 mm in both the axial and tangential directions. The average computation time on the same GPU card ranges between 0.26 and 0.34 seconds

    Drop Traffic in Microfluidic Ladder Networks with Fore-Aft Structural Asymmetry

    Full text link
    We investigate the dynamics of pairs of drops in microfluidic ladder networks with slanted bypasses, which break the fore-aft structural symmetry. Our analytical results indicate that unlike symmetric ladder networks, structural asymmetry introduced by a single slanted bypass can be used to modulate the relative drop spacing, enabling them to contract, synchronize, expand, or even flip at the ladder exit. Our experiments confirm all these behaviors predicted by theory. Numerical analysis further shows that while ladder networks containing several identical bypasses are limited to nearly linear transformation of input delay between drops, mixed combination of bypasses can cause significant non-linear transformation enabling coding and decoding of input delays.Comment: 4 pages, 5 figure

    Ultrahigh Surface Area Three-Dimensional Porous Graphitic Carbon from Conjugated Polymeric Molecular Framework

    Get PDF
    Porous graphitic carbon is essential for many applications such as energy storage devices, catalysts, and sorbents. However, current graphitic carbons are limited by low conductivity, low surface area, and ineffective pore structure. Here we report a scalable synthesis of porous graphitic carbons using a conjugated polymeric molecular framework as precursor. The multivalent cross-linker and rigid conjugated framework help to maintain micro- and mesoporous structures, while promoting graphitization during carbonization and chemical activation. The above unique design results in a class of highly graphitic carbons at temperature as low as 800 ??C with record-high surface area (4073 m2 g-1), large pore volume (2.26 cm-3), and hierarchical pore architecture. Such carbons simultaneously exhibit electrical conductivity &gt;3 times more than activated carbons, very high electrochemical activity at high mass loading, and high stability, as demonstrated by supercapacitors and lithium-sulfur batteries with excellent performance. Moreover, the synthesis can be readily tuned to make a broad range of graphitic carbons with desired structures and compositions for many applications.clos

    ACE-ASIA - Regional climatic and atmospheric chemical effects of Asian dust and pollution

    Get PDF
    Although continental-scale plumes of Asian dust and pollution reduce the amount of solar radiation reaching the earth's surface and perturb the chemistry of the atmosphere, our ability to quantify these effects has been limited by a lack of critical observations, particularly of layers above the surface. Comprehensive surface, airborne, shipboard, and satellite measurements of Asian aerosol chemical composition, size, optical properties, and radiative impacts were performed during the Asian Pacific Regional Aerosol Characterization Experiment (ACE-Asia) study. Measurements within a massive Chinese dust storm at numerous widely spaced sampling locations revealed the highly complex structure of the atmosphere, in which layers of dust, urban pollution, and biomass-burning smoke may be transported long distances as distinct entities or mixed together. The data allow a first-time assessment of the regional climatic and atmospheric chemical effects of a continental-scale mixture of dust and pollution. Our results show that radiative flux reductions during such episodes are sufficient to cause regional climate change

    Quark-Gluon Plasma at RHIC and the LHC: Perfect Fluid too Perfect?

    Full text link
    Relativistic heavy ion collisions have reached energies that enable the creation of a novel state of matter termed the quark-gluon plasma. Many observables point to a picture of the medium as rapidly equilibrating and expanding as a nearly inviscid fluid. In this article, we explore the evolution of experimental flow observables as a function of collision energy and attempt to reconcile the observed similarities across a broad energy regime in terms of the initial conditions and viscous hydrodynamics. If the initial spatial anisotropies are very similar for all collision energies from 39 GeV to 2.76 TeV, we find that viscous hydrodynamics might be consistent with the level of agreement for v2 of unidentified hadrons as a function of pT . However, we predict a strong collision energy dependence for the proton v2(pT). The results presented in this paper highlight the need for more systematic studies and a re-evaluation of previously stated sensitivities to the early time dynamics and properties of the medium.Comment: 11 pages, 9 figures, submitted to the New Journal of Physics focus issue "Strongly Correlated Quantum Fluids: From Ultracold Quantum Gases to QCD Plasmas
    corecore